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Differential complexes encode important algebraic and differential structures of physics models. > 13.03.2025, 10:00-12:00, Maison du Nom-
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A fundamental question in computational mathematics and computational physics is how to dis- rior calculus anc! applicqtions. He rece.ived ’Fhe
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The principle of identifying such conditions for multi-variable systems is captured by differential
complexes (sequences of spaces connected by differential operators) and their conomologies. Es-
tablishing these complexes and cohomological structures at the discrete level enables numerical
methods that preserve crucial conserved quantities and constraints. This cohomological approach
to compatible and structure-preserving discretization has been developed in the framework of dis-
crete differential forms and Finite Element Exterior Calculus.

Different problems involve different differential structures and complexes. For grad—curl—div-related
problems, the de Rham complex plays a fundamental role. For other problems, such as those from
continuum mechanics, differential geometry, and general relativity, other complexes are required,
such as the so-called elasticity (Kroner, Calabi) complex. These complexes and their properties
can be systematically derived from the de Rham complex via a Bernstein—Gelfand—Gelfand (BGG)
construction. There appears to be a neat correspondence between a large class of continuum
mechanics models and the BGG machinery. Hence, differential complexes also provide a new
angle for developing mechanics models and shed light on their structure-aware formulation and
structure-preserving discretization.

The lectures are structured as follows:

1. Introduction, motivation, and numerical examples. Definition of de Rham complexes and coho-
mology.

2. The BGG construction as a systematic approach to derive new complexes from the de Rham
complex and the associated machinery for continuum mechanics. The correspondence between
mechanics models and BGG machinery: elasticity, microstructures, dimension reduction, and
multi-dimensional models.

3. Finite Element Exterior Calculus (FEEC): discrete de Rham complexes and discrete differen-
tial forms (Lagrange, Nédélec, and Raviart—Thomas elements), and the discretization of BGG
complexes.

4. Applications to finite element methods for linear elasticity, Cosserat models and (mag-
neto)hydrodynamics.
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